

Particle ID and baryon production asymmetries from LHCb

Susanne Koblitz (CERN)
on behalf of the LHCb collaboration

22nd Rencontres de Blois 2010 15th - 20th July 2010

LHCb Detector Layout

A forward detector $(2 < \eta < 5)$ for precision measurement **MUON** of CP violation and rare B-decays: RICH2 5m Dipole magnet T3 RICH2 **RICH1** T1 RICH1 **Crucial for physics program:** excellent vertex resolution > PID: RICH for $\pi/K/p$, calorimeters, muon system 20m

The RICH Detectors

2 Detectors, 3 Radiators!

Angular Acceptances BICH1: BICH2:

25→250 mrad vertical

15→100 mrad vertical

25→ 300 mrad horizontal

 $15 \rightarrow 120 \text{ mrad horizontal}$

Need good π/K/p separation in momentum range between 1 and 100 GeV and good coverage of angular acceptance

RICH1 & RICH2: more details

- RICH2 rotated by 90°
- detectors
 planes outside
 tracking
 acceptance
 (flat mirrors)

	Plane *		/			
	Mirror				RICH1	RICH2
				Detector Planes	2 (Horizontal)	2 (Vertical)
I				Photon Detectors	$2 \times 7 \times 14 = 196$	2×9×16 = 288
0	1	00 2	00 z (c	Flat Mirrors	16	40
				Spherical Mirrors	4	56

RICH1 detector in action

A charged track emits a cone of Cherenkov light on passing through the radiators (Aerogel & C₄F₁₀ Gas).

Mirrors focus these cones into rings on 2 banks of photon detectors positioned out of LHCb acceptance.

RICH Event Display

Nov/Dec 2009 LHC beams √s = 900 GeV

RICH Event Display:

Detected signals:

Photon hits shown in yellow points

Information from reconstruction:

Expected rings for given hypothesis and ray-traced photons shown in white lines and blue points

Particle Identification in the data

- for PID need to look at all tracks and photons at the same time
- maximize event likelihood for photon distribution by changing mass hypotheses for the tracks
- use mass hypotheses of best event likelihood
- to improve purity: require large change in the event likelihood for a change of mass hypothesis for a given track

Study of RICH performance

- use known resonances to measure PID performance
- \rightarrow π : Λ , K_S decays
- κ: Φ decays with one identified K

- preliminary calibration used in analysis
- loose PID selection
- purity improved with stricter cuts

Comparison with PID in MC

- only preliminary calibration and alignment used
- very good agreement between data and MC

Particle ID in calorimeters

Scintillator Pad Detector (SPD)

- particle identification based on energy deposits in different calorimeters
- PID performance depends on energy resolution
- for electrons (E/p-cut):90% efficiency and 5% mis-ID
- very good agreement with MC

The Muon System

- 5 tracking stations around hadron absorbers (~ 23λ)
- Multi Wire Proportional Chambers (MWPCs) and Gas Electron Multipliers (GEMs)
- provides μ-ID with very high purity

μ-Identification

- \triangleright extrapolate track to μ -system and look for hits in μ -stations
- > a μ-candidate needs several hits in region of track impact point
- calculate probability based on hit distribution in μ-stations
- performance studied with J/ψ for μ-ID
- > use $\pi/K/p$ from decays to look at mis-ID rate

Baryon asymmetries

- Study of baryon number transport in pp-collisions
- expectation for p & Λ similar
- Λ baryon: sea-quark contribution
- existing models tuned to lower energies

http://home.fnal.gov/~skands/leshouches-plots/

4.5

η

Event Selection

- at least 1 primary vertex in interaction region
- select only good quality long tracks
- > Λ selection: $\Lambda \rightarrow p \pi$
 - prompt Λ: pointing to primary vertex
 - ^ A selected by the Armenteros-Podolansky variable
 - RICH PID not used
 - > combinatorial background in Λ s reduced with cuts on ratio of impact paratmeters (IPp-IP π /IP $_{\Lambda}$) and on decay angle
 - 2 data sets: √s=0.9 TeV: 0.31nb-1
 - \rightarrow **\Lambda:** 9224 Λ and 6802 Λ
 - > √s=7 TeV: ≤1nb-1
 - $\rightarrow \Lambda$: 45605 Λ vs 41192 $\overline{\Lambda}$

A Invariant Mass Distributions

Looking at A - kinematics

Measuring Baryon Asymmetries

- Determine raw asymmetries from number of observed particles and anti-particles in a given bin
 - use sideband subtraction to correct for background
- Correct raw asymmetries for:
 - Detector acceptance effects: efficiencies, material interactions and more (from detector simulation)
- Look at corrected asymmetries in bins of y and p_T
- Main contributions to systematic errors:
 - Uncertainty in acceptance corrections taken from Monte Carlo (material interactions)
 - Possible contribution from non-prompt and diffractive baryon production (below percent level)

Results for $\overline{\Lambda}/\Lambda$

- MC models:
 Perugia tunes do not include diffraction
 LHCb tune include diffraction
- (<1% after selection cuts)

- high energy data good agreement to MC
- low energy data significantly below MC
- \rightarrow look at y(beam) y(Λ)

Results for Λ/Λ

y_{BEAM}=8.345 for 7 TeV y_{BEAM}=6.556 for 0.9 TeV

Proton production asymmetry

- y use PID information from the RICH detectors to select
 protons → cuts tuned to obtain purity>90% in acceptance
- \rightarrow parallel analysis for π/K and p
- correct raw p and p rates for PID efficiency and purity
 obtained from analysis of control channels
- need to correct raw asymmetries for acceptance effects, in particular material interaction
- study contribution from diffractive and non-prompt interaction
- analysis being finalised,
 full results at ICHEP

Conclusion

- Particle ID in LHCb is in very good shape
- all systems show good performances in agreement with expectations from Monte Carlo simulation
- measurement of baryon asymmetry for prompt Λ production shown
- results for √s=0.9 TeV show larger asymmetry than expected from MC predictions
- > agreement of √s=7 TeV data with MC is better
- measurement of baryon asymmetry for prompt p production being finalised